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1 Problem statement

Semantic search has been a critical area of re-
search with in the field of Natural Language Pro-
cessing (NLP) since its formal inception. At its
core, semantic search seeks to improve the ac-
curacy of existing lexical searches by utilizing a
deeper, contextual understanding of the query in
order to provide more applicable and actionable
results. Recent advances in the the related field
of word embeddings shows promise in providing
the foundation for the contextual understanding
needed for semantic search.

Despite these developments, semantic code
search, a subfield of semantic search, has seen
very little direct or indirect progress. Semantic
code search involves the task of using a natural
language query to retrieve code snippets that per-
form the desired function (Husain and Wu, 2018).
For example, a programmer might search ”join
array elements with commas,” and a search en-
gine would provide the following Python code:
’,’.join(arr). Unlike previous domains
where semantic search has been applied, semantic
code search presents a unique set of problems in-
herent to programming. The tokens used to write
code are often technical and highly specific to their
respective codebase. Likewise, natural language
queries for code contain domain-specific terminol-
ogy and occupy a vast range of specificity.

To further progress current performance on se-
mantic code search, GitHub announced the Code-
SearchNet challenge (Husain et al., 2019). The
team collected a dataset of functions written in Go,
Java, JavaScript, PHP, Python, and Ruby, some
with accompanying documentation. The dataset
contains six million total functions, with two mil-
lion that have documentation. In addition to col-
lecting the data, the team has also created evalua-
tion metrics and a public leaderboard to track the

current state-of-the-art.
In their paper introducing the CodeSearchNet

challenge, the GitHub team defined their baseline
neural model architecture which relies heavily on
embeddings. During training, each query and code
snippet are encoded into a shared vector space
with the objective of minimizing the distance be-
tween query vectors and their corresponding code
snippet. Thus, the backbone to this approach is to
learn an optimal embedding representation.

In our work, we focused on exploring the effi-
cacy of different word embedding methods when
integrated into the existing GitHub model archi-
tecture. Each method was chosen to have a di-
rect comparison to a baseline model and therefore
make performance comparisons more meaningful.
We hope that our results can be used to establish
new baselines and further the latest research in this
domain.

2 What was proposed vs. what was
accomplished

• Understand codebase

• Setup training environment

• Implement Word2Vec

• Implement RNN Attention

Our Attention implementation was aban-
doned due to repeated Tensorflow errors,
which we encountered specifically when
transposing the input stream of tokens. Pe-
culiarly, we were able to train our network
for a significant number of iterations before
encountering these errors. In future works, it
would be important to revisit these errors.

• Implement ELMo

Working with the publicly available code-
base, we attempted to implement the ELMo
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model as an encoder, but we ultimately aban-
doned the approach since we were not able to
integrate the stream of tokens with out ELMo
encoder. In future works, we would look to
rearchitect the way in which the stream of to-
kens is ingested.

• Implement Concat Pooling

• Implement Concat Pooling + Learned
Weighted Avg

• Evaluate performance of all implemented
models

• Error Analysis of model results

3 Related work

3.1 Word Embeddings

The development of optimal embeddings has been
and continues to be possibly the most active area
of research in NLP. The classic approach, known
as bag-of-words, represents each type in the vo-
cabulary with a one-hot vector. Although simple
and intuitive, this method fails to encode the mean-
ing of the words or any positional information.

Mikolov et al. (2013) sought to address some of
these drawbacks with the creation of Word2Vec.
In short, real-value vectors were learned such that
words that appear in shared contexts would be
closer to each other than other unrelated words.
This representation has been shown to capture rel-
evant information about the meaning and usage
of words (Mikolov et al., 2013; Pennington et al.,
2014) and better downstream performance (Col-
lobert et al., 2011), however, this representation
fails to capture any data-specific contextual infor-
mation about each word that is encoded.

More recent techniques have sought to inject
context into word embeddings by extracting rep-
resentations from language models. In the most
basic of these techniques, the last hidden layer of a
recurrent neural network (RNN) is extracted as the
embedding. More sophisticated methods combine
multiple layers of bidirectional language models
(Peters et al., 2017, 2018) or utilize self-attention
in transformer architectures (Devlin et al., 2018).

3.2 Semantic Code Search

Previous work was done by the GitHub engineer-
ing team in this blog post (Husain and Wu, 2018).
Their approach involved training a Seq2Seq model

to act as an encoder for the code and training a sep-
arate language model to use as a sentence encoder
for the queries. The code embeddings were then
mapped into a shared vector space with the sen-
tence embeddings using dense layers. Finally, a
similarity lookup was performed to match an in-
put query with a function.

More recently, Cambronero et al. (2019) inves-
tigates the overall efficacy of supervised learning
techniques on the specific problem of semantic
code search. They accomplish this in part by com-
paring an existing unsupervised method known as
Neural Code Search (NCS) (Sachdev et al., 2018)
with their own approach, Embedding Unification
(UNIF), which is effectively a supervised NCS.
Although it is unclear whether better performance
is achieved with these methods, the paper offers a
critique of the usage of documentation as a surro-
gate from natural language queries.

3.3 Code Summarization

The problem of semantic code searching must rely
heavily on the embeddings, and subsequent en-
codings, the underlying models produce. For this
reason, it is important that any deployed model is
able to summarize code in a way that is then refer-
able. (Allamanis et al., 2016) approaches the prob-
lem of code summarization through neural atten-
tion mechanisms. In using attention mechanisms,
they are able to condense short code snippets into
shorter phrases that summarize the functionality of
the code. This work is significant since it demon-
strates the ability of a neural method to understand
important context-dependent features of the origi-
nal inputted code snippets (Allamanis et al., 2016).

4 Our Dataset

The provided dataset is publically avail-
able and extensively documented at
https://github.com/github/CodeSearchNet. It
is segmented into various partitions by pro-
gramming language, and subsequently into
training/testing/validation splits. Specifically,
the data is formatted into JSONL files, newline-
delimited JSON files. Additionally, the dataset
sequesters those functions that do not have an
associated docstring as additional data points.
Table 1 is replicated from Husain et al. (2019)
which shows the distribution of the available
data across both language and corresponding
documentation.
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A single datum follows the following schema:

• repo: the owner/repo

• path: the full path to the original file

• func name: the function or method name
original string: the raw string before tok-
enization or parsing

• language: the programming language

• code: the part of the original string that is
code

• code tokens: tokenized version of code

• docstring: the top-level comment or doc-
string, if it exists in the original string

• docstring tokens: tokenized version of doc-
string

• partition: a flag indicating what partition this
datum belongs to of train, valid, test, etc.
This is not used by the model. Instead we
rely on directory structure to denote the par-
tition of the data.

• url: the url for the code snippet including the
line numbers

Due to the format of this document, it would
be difficult to accurately display an example data
from this dataset and thus we provide this link
for a python notebook which displays an exam-
ple and some relevant statistics. As would be ex-
pected, the tokens generated for the code snippets
are vastly different from even a byte-pair encod-
ing of natural language. We expect that the un-
usual types of tokens make transfer learning using
models pre-trained on natural language like BERT
much less effective. In addition, many provided
docstrings are quite small and describe the func-
tions at very high levels which could make learn-
ing representative embeddings difficult. Unfortu-
nately, some programming languages have much
less viable data and so we expect model perfor-
mance on held out data from those languages to
be worse.

Number of Functions

w/ documentation All

Go 347 789 726 768
Java 542 991 1 569 889
JavaScript 157 988 1 857 835
PHP 717 313 977 821
Python 503 502 1 156 085
Ruby 57 393 164 048

All 2 326 976 6 452 446

Table 1: Dataset Size Statistics

5 Baselines

The GitHub team provides baselines using a joint
vector representation (JVR) as well as Elastic-
Search. In the context of semantic search, a JVR
can be learned such that the vectors of encoded
queries and corresponding results will be ”close”
to each other in some latent space. For this project
specifically, this architecture would encode some
natural language query and then return a list of
code snippets that, when also encoded, were clos-
est to the query. ElasticSearch, unlike JVR, is not
a neural model and is instead based on the Apache
Lucene project. Since we focused entirely on in-
vestigating the performance of additional encoders
for creating JVRs, we will not be including spe-
cific information about the ElasticSearch baseline
here.

The following encoders for JVR are avail-
able as baselines: Neural-Bag-Of-Words, RNN,
1D-CNN, Self-Attention (BERT), and a 1D-
CNN+Self-Attention hybrid. Through the
Weights & Biases integration, we have access to
the corresponding model weights and statistics.
Below we have included a short description of
each baseline model. Note that the hyperparam-
eters for all of the models are presented in Table
7.

5.1 Encoders

Neural-Bag-Of-Words (NBoW) The Neural-
Bag-Of-Words technique simply takes the tradi-
tional Bag-Of-Words method and makes it differ-
entiable such that it can be used in neural models.

RNN Recurrent Neural Networks (RNN) aug-
ment the normal neural network structure to bet-
ter retain information from previous inputs. This
is especially useful when sequences are used as
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input. In short, an additional weight matrix is
learned which controls how much information
from the previous hidden state is included in the
current hidden state.

1D-CNN Convolutional Neural Networks
(CNN) are designed to use a set of filters or
kernels to learn spatial hierarchies in input se-
quences. In the 2D case of images, CNNs can
learn increasingly higher level features, from lines
and curves to the complex structure of the target
in the image. In the case of text input, a 1D filter
is used but the underlying architecture remains
the same.

Self-Attention (BERT) Bidirectional Encoder
Representations from Transformers (BERT) was
the first truly bidirectional encoding method for
text. It accomplished this by masking at most 15%
of the input sequence. The transformer then per-
forms the task of a language model and predicts
the masked tokens. For improved accuracy, the
model also predicts whether two input sequences
appeared sequentially in the data.

1D-CNN+Self-Attention This model com-
bines the aforementioned architectures into one
pipeline. There does not seem to be any research
which directly examines this method but it was
included by the GitHub team.

5.2 Note on Sequence Embeddings
In their baselines, the Github team has imple-
mented three basic methods of sequence embed-
ding, all involving pooling. Specifically, they im-
plements global max, mean, and learned weighted
mean pooling over the token sequences.

5.3 Training Data Setup
In accordance with the GitHub team, we utilize
a 80/10/10 train/val/test split for our experiments.
To further ensure our results are consistent, we did
not modify included the code which prepares this
split.

6 Your approach

Given our intention to provide a survey of em-
bedding techniques in this domain, for more rele-
vant comparison we chose each of our techniques
such that they could be compared to a similar base-
line and that we could successfully implement and
test them in the time allotted. In each subsection
below, for completed models, we summarize the

model architecture, which baseline we intended to
compare it to, implementation challenges, its lo-
cation in the codebase, and the results using the
provided evaluation metrics. For models we were
not able to complete, we detail the challenges that
we could not overcome.

6.1 Token Embedding

The method by which tokens in a corpus are en-
coded continues to be the fundamental problem in
NLP. For our survey, we chose to include a vari-
ety of methods from recent research on embedding
techniques to supplement the presented baselines.

6.1.1 ELMo Encoding

Tensorflow Hub (Abadi et al., 2015) provides an
implementation of the ELMo (Peters et al., 2018)
architecture, complete with pre-trained weights.
We believed this model to be a viable choice of
encoding both our queries and code due to the fact
that encodings would be contextual. As we have
mentioned above, functions in our dataset are im-
plemented in a varied selection of languages that
all have separate syntax and control structures. For
this reason, we believed a the explicit contextual
nature of the ELMo encodings would produce a
performant encoder. We can see the code imple-
mented at this pull request.

Ultimately we abandoned the approach due to
the fact the publicly available codebase did not
provide efficient access to the raw tokens. Specif-
ically, the encoder module makes the assumption
that the core model would operate on embeddings
produced by a linear embedding layer. We at-
tempted to overcome this by referencing the token
vocab dictionary, but this did not allow for an effi-
cient implementation. Additionally, we attempted
to use the raw tokens from the original generator
function, but ran into issues with tensorizing these
tokens.

6.1.2 RNN Attention

This model will emulate the Attention model we
worked on for one of the homeworks in the class.
A major challenge was that we had to adopt the
homework implementation to the GitHub code-
base. Another challenge we faced was the fact that
the codebase uses Tensorflow instead of Pytorch.
While they both can accomplish the same func-
tionality, we spent a considerable amount of time
experimenting and reading the docs to make sure
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Encoder CodeSearchNet Corpus (MRR)

Text Code Pool Go Java JS PHP Python Ruby Avg

Github

NBoW NBoW LWA 0.6409 0.5140 0.4607 0.4835 0.5809 0.4285 0.6167
1D-CNN 1D-CNN LWA 0.6274 0.5270 0.3523 0.5294 0.5708 0.2450 0.6206
biRNN biRNN LWA 0.4524 0.2865 0.1530 0.2512 0.3213 0.0835 0.4262
SelfAtt SelfAtt LWA 0.6809 0.5866 0.4506 0.6011 0.6922 0.3651 0.7011

Ours

NBoW NBoW CP 0.4949 0.2242 0.174 0.0801 0.1367 0.2858 0.2497
NBoW NBoW CP+LWA 0.5846 0.3926 0.3333 0.2928 0.3867 0.3732 0.4495
biRNN biRNN CP 0.4630 0.2933 0.0913 0.3589 0.2985 0.0856 0.4357
CBoW CBoW LWA 0.6903 0.5483 0.4826 0.5416 0.6492 0.4554 0.6600

Table 2: Embedding performance comparison between GitHub’s baselines and our models using Mean Reciprocal
Rank (MRR) on Test Set of CodeSearchNet Corpus. The ”Pool” column indicates the pooling method used on
both the text and code encoders: Learned Weighted Average (LWA), Concat Pooling (CP), and both (CP+LWA).
Note, we corrected an error from Milestone 2 with the Avg value for our NBoW with CP encoder.

Encoder CodeSearchNet Challenge– NDCG All

Text Code Pool Go Java JS PHP Python Ruby Avg

Github

ElasticSearch - 0.186 0.190 0.204 0.199 0.256 0.197 0.205
NBoW NBoW LWA 0.130 0.121 0.175 0.123 0.223 0.212 0.164
1D-CNN 1D-CNN LWA 0.059 0.128 0.044 0.135 0.166 0.115 0.108
biRNN biRNN LWA 0.019 0.062 0.025 0.045 0.064 0.030 0.041
SelfAtt SelfAtt LWA 0.049 0.100 0.061 0.094 0.181 0.190 0.113

Ours CBoW CBoW LWA 0.104 0.139 0.15 0.08622 0.1727 0.2017 0.1423

Table 3: Normalized Discounted Cumulative Gain (NDCG) Results on CodeSearchNet Challenge leaderboard.

the operations that were being carried out were the
same.

The Attention RNN was going to be compared
with the RNN from GitHub as our baseline. The
idea was to see if implementing attention would
beat their RNN. If it doesn’t, then it probably
won’t do any better than their RNN when com-
pared to other models. If Attention beats their
RNN, then we could further compare it with other
models to see how improved the results are.

As mentioned earlier, we implemented atten-
tion the same way we did for the homework as-
signment. Due to the issues mentioned above, we
spent a lot of time understanding the nuances of
TensorFlow and its methods and how it works as
we developed the model. Furthermore, we had
to write the model to suit the codebase we had.
In other words, we had to make our code fit with
the template provided to us by GitHub. This took
quite a bit of time, since we also had to discern
how much of the processing the provided code
did for us. This was important to know, since
this would inform exactly what parts of attention

needed to be implemented. The code that was
completed can be viewed in this pull request.

We attempted to implement attention within the
RNN sequence encoder. In the homework assign-
ment, we encoded the data using an RNN, per-
formed Attention on this encoded data and con-
catenated context vectors. The result of this op-
eration was then passed into the decoder. We
followed a similar approach, where we inserted
our attention code into the existing encoder itself,
using the outputs from their RNN implementa-
tion. After the context vectors are concatenated to
the final states, the token embeddings are pooled
and the resulting sequence embeddings returned.
To enable attention, we added a hyperparameter
called ”rnn do attention”, where if it is true, our
added code would execute, otherwise, the RNN
sequence encoder would run just as it would have
before we added Attention.

Unfortunately, we could not get Attention to
work as we intended. In our implementation of
Attention, we had to perform a lot of transposing.
This required knowing the dimensions of the Ten-
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sors being passed through. However, after running
the code, we found that some Tensors had dif-
ferent shapes, which could not be accounted for.
Therefore, the results for this model have not been
found.

6.1.3 Continuous Bag of Words (Word2Vec)
Continuous Bag of Words (CBoW) is one of two
different Word2Vec models, Skip-gram being the
other. CBoW predicts the current word given its
surrounding words. For example, the sentence
”He likes pie” would use [He, pie] as the target
window to predict ”likes”. The model works by
first creating a context or target windows for each
word in the corpus. Then, given a context, the
model tries to predict the target word by classi-
fying the context in a neural network.

Our CBoW results will be compared to Github’s
NBoW baseline, as both models are similar in im-
plementation. Considering the NBoW implemen-
tation was the best neural baseline provided by
GitHub, it stands to reason that CBoW will also
perform well.

For our implementation, we decided to use a tar-
get window of size 4, with 2 words on each side of
the current word. If there weren’t 2 words on one
side of the current word, we used as many words
we could on that side and the missing words were
input as zero vector token embeddings. The Con-
tinuous Bag of Words implementation can be seen
in this pull request.

As seen in Table 6, the MRR for CBoW per-
forms significantly better than NBoW in every in-
dividual language and in average MRR. CBoW
also beats Self-Attention on some languages. In
their paper, the GitHub team mention that the Self-
Attention model’s high scores was due its impres-
sively large capacity. Our model, CBoW, only has
slightly more capacity than NBoW relative to Self-
Attention and thus we suspect that there is a upper
limit where capacity, especially in the domain of
token embedding, becomes superfluous.

As we further explain in the error analysis, we
intended to submit our best model to the leader-
board in order to obtain the NDCG scores. CBoW
was our best model as measured by MRR and thus
its predictions were submitted. Our public submis-
sion can be found at this link. Although we were
able to achieve 9th place on the leaderboard unof-
ficially, we expected that CBoW’s vastly improved
performance in MRR compared to the NBoW
baseline would be indicative of a NDCG score

higher than NBoW. However, as clearly visible
in Table 3, CBoW only outperformed the NBoW
baseline on one language. This result is quite in-
teresting and we explore some possible implica-
tions in the error analysis.

6.2 Sequence Embedding

In order to allow a semantic search between nat-
ural language queries and corresponding code, a
strategy must be employed that effectively utilizes
token embeddings from both spaces to compute or
learn embeddings for entire sequences. Inspired
the GitHub team’s first blog post on semantic code
search, we decided to implement concat pooling
to compare to the learned weighted mean pooling
used by the baseline models.

6.2.1 Concat Pooling
Concat pooling, as proposed in Howard and Ruder
(2018), concatenates the max and mean pool of
the hidden states ”over as many time steps as fit in
GPU memory” to the final hidden state. Howard
and Ruder present this method as a technique for
fine-tuning the ULMFiT method for ”Target task
classifier fine-tuning”. The motivation behind this
technique was that the last layer of their AWD-
LSTM (Merity et al., 2017) would likely not be
sufficient for classification of a sequence or entire
document.

Initially, we thought that this alternative se-
quence embedding method could be compared to
all of the provided baselines as they were trained
using a basic learned weighted average. However,
as briefly explored in our second milestone, it be-
came clear that, unless we devised a novel modi-
fication of this method, it only made sense to use
concat pooling on recurrent models, as originally
presented by Howard and Ruder (2018). Thus we
will only be comparing the unaltered implemen-
tation to the biRNN baseline. However, we will
more deeply describe our change in direction as
well as an attempt at a novel modification using
a combination of concat pooling and the learned
weighted average in the error analysis.

Within our fork of the CodeSearchNet code-
base, we have added a new pooling option,
’concat’, which will perform the operation de-
scribed above using the max and mean pool func-
tions already implemented by Github. Most of
the repository operates on the assumption that the
user has correctly set the encoder hyperparameters
such that there is no dimension overflow when cre-
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ating the embeddings. We originally thought that
this assumption would be sufficient to incorpo-
rate the new pooling method. However, none the
pooling methods implemented by the GitHub team
changed modified any dimensions and thus the the
sequence embedding dimension was equivalent to
the token embedding dimension. In addition, the
codebase is designed such that a TensorFlow built-
in embedding layer is applied before the encoders
are initialized, there was no way to set the hyper-
parameters of certain models like NBoW to pre-
vent overflow. Therefore, we have added the hy-
perparameter ’seq embedding size’ to all
encoders that allows the sequence embeddings
size to be set independently of the token embed-
ding size. Now, when concat pooling is used, if
the default token embedding size of 128 is used,
the sequence embedding size should be set to 384.

The pooling method was added to
src/utils/tfutils.py along with small changes
to other related files. The entire diff can be
viewed in the following two pull requests: 1 and
2. While testing our implementation, we ran into
a considerable amount of errors and we created
an issue in the repository to keep track of our
progress.

Tables 4 and 5 present the MRR results of all the
encoders that we trained with concat pooling or
a variant. Both NBoW with normal concat pool-
ing and concat pooling with a learned weighted
average perform worse than the NBoW baseline
on every language. Although clear in hindsight
that the NBoW encoder with concat pooling would
not perform as well as the original baseline, it is
not clear why the other also performs worse. The
biRNN encoder with concat pooling manages to
out perform the biRNN baseline on four out of the
six languages as well as the average. This result is
more in line with what we expected. All these re-
sults and their implications will be further detailed
in our error analysis.

6.3 Training Environment

As recommended by the GitHub team, we made
use of the Amazon Web Services (AWS) EC2
p2.xlarge and p3.2xlarge instance types. Although
we previously thought there would be an issue
with credit usage for training, it appears that the
AWS Cost Explorer is completely inaccurate and
we did not spend more than our $350 limit. Each
instance used the Deep Learning AMI (Ubuntu

18.04) Version 25.0.
Additionally, we loaded Docker onto our in-

stance so that we could utilize the prepared con-
tainers, as provided by Github. These containers
make use of the NVIDIA Docker runtime which
provides GPU support. Once the containers are
loaded, we were able to download and store the
preprocessed datasets, which are also provided by
Github. Further details can be found on the official
README.

7 Error analysis

To evaluate the performance of their models, the
GitHub team uses two methods different methods:
Mean Reciprocal Rank (MRR) and Normalized
Discounted Cumulative Gain (NDCG).

MRR is defined as follows

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(1)

where Q is a set of queries and ranki is the po-
sition of the first relevant result for the i-th query.
In the case of the CodeSearchNet paper, the team
selected a fixed set of 999 ”distractor snippets” for
each valid query/code pair and thus ranki is the po-
sition of the correct snippet among the distractors.
Although no literature is provided, we provide ci-
tation for MRR’s use at the National Institute of
Standards and Technology (NIST) Text REtrieval
Conference (TREC) (Radev et al., 2002) signify-
ing its ubiquity in the domain of information re-
trieval.

NDCG can be defined in parts and all parts as-
sume that a grading scheme has been created to
score the relevance of all results. Cumulative Gain
(CG) is the sum of the relevance of all results us-
ing the established grading scheme. Discounted
Cumulative Gain (DCG) augments CG by penal-
izing relevant results for being ranked lower by
logarithmically reducing the grade in proportion to
the position of the result. Finally, Normalized Dis-
counted Cumulative Gain (NDCG) further adjusts
the metric by normalizing the CG of each position
across all queries. For the CodeSearchNet Chal-
lenge, the GitHub team had a group of expert pro-
grammers rate possible results for 99 pre-defined
natural language queries. This process is further
detailed in Husain et al. (2019).

MRR over the test split is outputted by an in-
cluded script once the model has finished train-
ing. Unfortunately, the GitHub team prefers that
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researchers submit their predictions to the W&B
leaderboard in order to obtain NDCG results and
submissions are capped at one per two weeks. Al-
though this restriction does prevent spam, it made
evaluation using NDCG impossible for our project
given the time frame. Thus, we chose to only sub-
mit our best model to the leaderboard.

Outlined as a key factor of our approach, each
of our models is intended to be compared to its
most similar baseline counterpart and we do as
such in our error analysis. For each training run,
the W&B codebase integration generates a table
of the MRR results on the Test Set in addition to
the actual scores. Namely, for each test example,
we have the rank that our models gave the correct
code snippet among the 999 distractor snippets.
In addition, the examples displayed in the tables
are consistent between every run. This, combined
with the fact that the GitHub team’s runs are also
public, means that we can compare the delta of
the rankings between models. Using this delta, we
present the overall performance difference as well
as any specific variation that we noted.

7.1 CBoW NDCG Results and Implications

We would first like to quickly acknowledge
some interesting findings we encountered with the
CodeSearchNet Challenge leaderboard. As we
briefly mentioned in our reporting of the results
of the CBoW model, the NDCG scores were not
what we expected. The CBoW model scored much
better on MRR, but worse on NDCG. It should be
noted that there are multiple NBoW submissions
with equivalent hyperparameter values and their
scores vary slightly. Thus, a possible explanation
is that perhaps if we trained the model a few more
times, we could obtain a more accurate picture of
its performance.

However, we see that this phenomenon also oc-
curs with the SelfAtt model. In their paper, the
GitHub team attributes this to the fact that al-
though the SelfAtt model has a high capacity, the
NBoW model seems to be effective at keyword
matching, clearly an important part of search.
Now, with CBoW, we also have a relatively low
capacity model that scores well on MRR, but not
on NDCG.

There are a myriad of possible interpretations of
these results so we will summarize our best ones.
Most simply, the one additional layer in CBoW
when compared to NBoW could cause the model

to loose its ability to learn keyword matching. We
also suspect that MRR might be a biased estimator
of NDCG in that, for smaller accuracy values, the
metric were congruent but the consistency fades as
MRR increase. Finally, given that the test set for
MRR and NDCG are fixed, certain model types
could be overfitting to the specific examples cho-
sen by the GitHub team.

7.2 NBoW with Concat Pooling vs. GitHub’s
NBoW Baseline

Figure 1: NBoW Baseline Rank Histogram

GitHub’s NBOW baseline provides reasonable re-
sults. Figure 1 shows the model is able to gener-
alize well, and produce consistent results. Quan-
titatively, we observe that the model’s predictions
of rank have a standard deviation of 131.029. This
high values is due to the outliers with extremely
high rank.

Figure 2: NBoW Concat Pooling Rank Histogram

Our attempt at providing the NBoW model
with more capacity led us to the Concat Pooling
method. Figure (fig) shows that our initial hypoth-
esis was wrong, and that we actually hindered the
model’s ability to rank code query pairs. Quan-
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titatively, we observe that with additional Con-
cat Pooling the model’s predictions of rank have
a standard deviation of 303.5964.

Figure 3: NBoW Weighted Average Concat Pooling
Rank Histogram

Using a learned weighted average without Con-
cat Pooling implementation allowed the model to
generalize better than the original Concat Pooling
method, but still performed poorly in comparison
to the original NBoW baseline model. We see
quantitatively, this method obtained a standard de-
viation of 265.9918, in terms of rank. Specifically,
we see that the distribution of outliers is generally
suppressed, and that the high-rank examples are
more consistent.

Figure 4: NBoW with Concat Pooling MRR Relative
Difference

Figure 5: NBoW with Weighted Average Concat Pool-
ing MRR Relative Difference

Figures 4 and 5 show the general down trend of
the Concat Pooling used with our NBoW models.
Figure 5 shows that even with the additional mod-
ification made, to provide the pooling layer with
a learned weighted average, did not provide the
model with extra contextual capacity as we had
hoped.

7.3 biRNN with Concat Pooling vs. GitHub’s
biRNN Baseline

Figure 6: biRNN Baseline Rank Histogram

Figure 6, like the previous analysis, shows the
biRNN baseline’s rank distribution. The standard
deviation of this distribution was 163.5473. We
find it interesting that this value is close to the stan-
dard deviation of the NBoW baseline. This would
suggest that the models perform similarly poorly
on outliers.
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Figure 7: biRNN with Concat Pooling Rank Histogram

Figure 8: biRNN with Concat Pooling MRR Relative
Difference

Although our model scored slightly better on
MRR, the standard deviation of the rank distribu-
tion of our model was 197.0349, which is 33.4876
higher than the biRNN baseline at 163.5473. This
would suggest that the additional information pro-
vided by the mean and max pool only contributes
to better performance on examples that were al-
ready given a high rank by the baseline while out-
liers remained poorly ranked. We posit that if we
were to train the model more, we might see a re-
gression to the mean model performance, at or
near the performance of the biRNN baseline.

7.4 Our CBoW vs. GitHub’s NBoW Baseline

Figure 9: CBoW Rank Histogram

Figure 10: CBow MRR Relative Difference

Our CBoW model beat Github’s NBoW baseline
MRR in every language and in average. Our
smallest relative difference to the NBoW baseline
is 0.02, showing an overall significant improve-
ment in terms of MRR. We also see significantly
higher individual language improvements in PHP,
Python, and Go, all of which have an MRR dif-
ference of 0.05 or higher. With a standard devia-
tion of 124.3785 compared to the NBoW baseline
standard deviation of 131.029, the CBoW model
not only shows higher performance but also more
consistency than NBoW.

8 Contributions of group members

List what each member of the group contributed to
this project here.

• Shishir Jakati: attempted ELMo implementa-
tion, implemented Weighted Average Concat
Pooling, error analysis visualizations, gath-
ered information from W&B, lots of writing
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• Sean Kelley: implemented Concat Pool-
ing, helped setup AWS training environment,
helped gather rank information from W&B,
lots of writing

• Mukul Kudlugi: implemented CBoW, helped
determine that Word2Vec approach should be
changed, lots of writing

• Sidharth Subramanian: attempted Attention
implementation, helped gather W&B data,
lots of writing

9 Conclusion

Although it appeared to be straightforward from
the outside, our project proved quite challenging.
The most formidable ordeal being the wonderful
monstrosity that is Tensorflow. It was often ex-
ceedingly difficult to find relevant information that
we needed to resolve errors with our models and
debugging static computational graphs is frustrat-
ing at best. All this considered, it was exciting to
participate in live research and compare our mod-
els to others also working in the field.

Going forward, we hope to have our CBoW
leaderboard results merged into the CodeSearch-
Net repository so our position can be made offi-
cial. Our results and CBoW model should be of
particular interest for others participating in the
challenge given the large discrepancy between its
MRR and NDCG scores. Related to that, we be-
lieve that future work must be done on analyz-
ing the train and test data to ensure that they are
roughly representative and thus the metrics are not
biased to the data they are given. We also posit
that a stochastic method of determining the train
and test data as opposed to the fixed sets pro-
vided could yield more accurate results. Over-
all, the subfield of Semantic Code Search still
remains in its infancy, but the results of current
approaches have already produced interesting de-
bates and now offer countless possible research di-
rections.
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Encoder CodeSearchNet Corpus (MRR)

Text Code Pool Go Java JS PHP Python Ruby Avg

Github biRNN biRNN LWA 0.4524 0.2865 0.1530 0.2512 0.3213 0.0835 0.4262

Ours biRNN biRNN CP 0.4630 0.2933 0.0913 0.3589 0.2985 0.0856 0.4357

Table 4: Sequence embedding performance comparison for biRNN model using Mean Reciprocal Rank (MRR) on
Test Set of CodeSearchNet Corpus.

Encoder CodeSearchNet Corpus (MRR)

Text Code Pool Go Java JS PHP Python Ruby Avg

Github NBoW NBoW LWA 0.6409 0.5140 0.4607 0.4835 0.5809 0.4285 0.6167

Ours
NBoW NBoW CP 0.4949 0.2242 0.174 0.0801 0.1367 0.2858 0.2497
NBoW NBoW CP+WA 0.5846 0.3926 0.3333 0.2928 0.3867 0.3732 0.4495

Table 5: Sequence embedding performance comparison for NBoW model using Mean Reciprocal Rank (MRR) on
Test Set of CodeSearchNet Corpus.

Encoder CodeSearchNet Corpus (MRR)

Text Code Pool Go Java JS PHP Python Ruby Avg

Github NBoW NBoW LWA 0.6409 0.5140 0.4607 0.4835 0.5809 0.4285 0.6167

Ours CBoW CBoW LWA 0.6903 0.5483 0.4826 0.5416 0.6492 0.4554 0.6600

Table 6: Token embedding performance comparison for NBoW baseline model versus our CBoW model using
Mean Reciprocal Rank (MRR) on Test Set of CodeSearchNet Corpus.
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Encoder Hyperparameter Value

All token vocab size 10000
token vocab size 10000
token vocab count threshold 10
token embedding size 128
seq embedding size 128
use subtokens False
mark subtoken end False
max num tokens 200
use bpe True
pct bpe 0.5

NBoW nbow pool mode ’weighted mean’

RNN rnn num layers 2
rnn hidden dim 64
rnn cell type ’LSTM’
rnn is bidirectional True
rnn dropout keep rate 0.8
rnn recurrent dropout keep rate 1.0
rnn pool mode ’weighted mean’

1D-CNN 1dcnn position encoding ’learned’
1dcnn layer list [128, 128, 128]
1dcnn kernel width [16, 16, 16]
1dcnn add residual connections True
1dcnn activation ’tanh’
1dcnn pool mode ’weighted mean’

BERT self attention activation ’gelu’
self attention hidden size 128
self attention intermediate size 512
self attention num layers 3
self attention num heads 8
self attention pool mode ’weighted mean’

D-CNN+BERT same as 1D-CNN and BERT

Table 7: Baseline Encoder Hyperparameters
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